Short-term Electric Load Forecasting:a Comparative Study
نویسندگان
چکیده
This paper focuses on the study of short term load forecasting (STELF) using interval Type-2 Fuzzy Logic (IT2FL) and feed-forward Neural Network with back-propagation (NN-BP) tuning algorithm to improve their approximation capability, flexibility and adaptiveness. IT2FL for STELF is presented which provides additional degrees of freedom for handling more uncertainties for improving prediction accuracy and reducing cost. The IT2FL comprises five components which include; the fuzzification unit, the knowledge base, the inference engine, the type reducer and the defuzzification unit. Gaussian membership function is used to show the degree of membership of the input variables. The lower and upper membership functions (fired rules) as well as their consequent coefficients of IT2FL are fed into a (NN) which produces a crisp value coresponding to the optimal defuzzified output of IT2FLSs. The NN type reducer is trained to optimize parameters of membership function (MF) so as to produce an output with minimum error function with the purpose of improving forecasting performance of IT2FLS models. The IT2FNN system has the ability to overcome the limitations of individual technique and enhances their strengths to handle electric load forecasting. The IT2FNN is applied for STELF in Akwa Ibom State-Nigeria. The result of performance of IT2FNN is compared with IT2FLS and T1FLS methods for short term load forecasting with MSE of 0.00123, 0.00185 and 0.00247 respectively. Also, the results of forecasting are compared using RMSE of 0.035, 0.043 and 0.035 respectively, indicating a best accurate forecasting with IT2FNN. In addition, the result of performance of IT2FNN is compared with IT2FLS and T1FLS methods for short term load forecasting with MAPE of 1.5%, 3% and 4.5% respectively. Simulation results show that the IT2FNN approach takes advantages of accuracy and efficiency and performs better in prediction than IT2FL and T1FL methods in power load forecasting task. .
منابع مشابه
Neural Networks in Electric Load Forecasting:A Comprehensive Survey
Review and classification of electric load forecasting (LF) techniques based on artificial neuralnetworks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANNoriented applications for forecasting are given in the literature. These are classified into five groups:(1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs inLF,...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملShort Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression
The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...
متن کاملLong-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks
Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...
متن کامل